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LETTER TO THE EDITOR

Explicit solvability of a class of Maliuzhinets’ equations
with matrix coefficients

M A Lyalinov†
Department of Mathematical Physics, Institute of Physics, University of St Petersburg, 198904,
Russia

Received 20 August 1997

Abstract. A coupled system of Maliuzhinets’ functional equations for a pair of unknown
functions is studied. It is shown that the system can be solved in an explicit form for a
specific but non-trivial class of its matrix coefficients. Two examples arising in electromagnetic
diffraction theory in a wedge-shaped region are briefly discussed.

The problem of diffraction by an impedance wedge has been solved by Maliuzhinets in
his fundamental paper (Maliuzhinets 1958). The problem was reduced to the functional
equations for one unknown function which was determined in an explicit form. Problems
of modern diffraction theory in a wedge-shaped region with vector boundary conditions are
reduced to the systems of functional equations for two unknown functions (see, for example,
Bernard 1991, Lyalinov 1994). These equations cannot be decoupled in the general case.
However, it is of great importance to have an exact solution in some practical situations.

The problem in question has the obvious similarity with the explicit commutative
factorization of a 2×2 matrix (Chebotarev 1956, Khrapkov 1971, Daniele 1984, Hurd 1976,
Rawlins and Williams 1981, Jones 1991 and many others). Recent progress is connected
with the generalization on a class of the higher-order matrices (Luk’yanov 1983) and with
studying its algebraic nature.

In this letter we demonstrate a class of vector Maliuzhinets’ equations with 2×2 matrix
coefficients which are solvable in an exact form. The matrix coefficients belong to a class
of functionally commutative matricesA(α) (Chebotarev 1956), i.e. [A(t),A(τ )] = 0. We
study the system of inhomogeneous Maliuzhinets’ equations

Aj (α)ϕ(α − (−1)j8)− Aj (−α)ϕ(−α − (−1)j8) = ψj (α) j = 1, 2 (1)

whereAj (α) is an entire 2× 2 matrix,ψj (α) = (pj (α), qj (α))T is a given entire vector,
8 ∈ (0, π) and α is the complex variable. The unknown vectorϕ(α) = (f (α), g(α))T

is usually sought in the classHδ(5) of vectors which are regular in the strip5 = {α :
|Reα| < 8} with the possible exception of one poleα0(−8 < α0 < 8) and with a given
value of resα0 ϕ(α) atα0, and which are continuous in̄5. These vectors admit meromorphic
continuation inC. Moreover, the componentsf (α) andg(α) are bounded as| Imα| → ∞
in 5 and satisfy the conditions

f (i∞) = −f (−i∞) g(i∞) = −g(−i∞)
|f (α)− f (±i∞)| < constant× exp(±iδα) δ > 0

|g(α)− g(±i∞)| < constant× exp(±iδα)
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as Imα→±∞ in 5. Usually the entries ofAj (α) andψj (α) are polynomials of sinα and
cosα (Lyalinov 1994).

We construct the general solution of equations (1) with special coefficients for a class
of vectors which includesHδ(5). First, for simplicity we assume thatAj (α), j = 1, 2,
have the form

Aj (α) = aj (α)I+ bj (α)J (2)

where

I =
(

1 0
0 1

)
J =

(
0 1
κ 0

)
J2 = κI

κ ∈ C, aj (α) and bj (α) are the entire functions. The matrices (2) are functionally
commutative and admit an explicit solution of system (1). Furthermore, in this letter we
demonstrate a more general class of matrices; however, the corresponding solution has a
less compact form in comparison with that for the class (2). Equations (1) can be rewritten
as follows

ϕ(α − (−1j )8) = Gj (α)ϕ(−α − (−1)j8)+ A−1
j (α)ψj (α) (3)

with

Gj (α) = A−1
j (α)Aj (−α) j = 1, 2. (4)

It is obvious thatGj (α)Gj (−α) = I,

Gj (α) = uj (α)I+ vj (α)J (5)

uj (α) = 1−1
j (α)(aj (α)aj (−α)− κbj (α)bj (−α))

vj (α) = 1−1
j (α)(aj (α)bj (−α)− bj (α)aj (−α))

1j (α) = a2
j (α)− κb2

j (α).

We adopt the first principal assumption that1j(α) = detAj (α), j = 1, 2, have no zeros
on the imaginary axisL = (−i∞, i∞). The second principal assumption is that logGj(α),
j = 1, 2, can grow not faster than an exponent exp(ν| Imα|), ν > 0 as| Imα| → ∞. The
matrix (5) in system (3) can be represented in the exponential form (Khrapkov 1971)

Gj (α) =
√
λ1
j (α)λ

2
j (α) exp

{
1

2
log

(
λ1
j (α)

λ2
j (α)

)
J√
κ

}
where detGj (α) = λ1

j (α)λ
2
j (α) = u2

j (α) − κv2
j (α), and λ1

j (α) = uj (α) + √κvj (α),
λ2
j (α) = uj (α)−

√
κvj (α) are the eigenvalues ofGj (α). As a result, we have

logGj (α) = log(u2
j (α)− κv2

j (α))I/2+ log

(
uj (α)+√κvj (α)
uj (α)−√κvj (α)

)
J/(2
√
κ) (6)

where logGj in (6) is fixed by the conditions logGj (0) = 0, Gj (0) = I, provided
that appropriate cuts are conducted on theα-plane. Note that, due to the first principal
assumption, there are neither poles nor zeros on the imaginary axisL in the arguments of
the logarithms in (6).

Let us define thebasic matrix X(α) which is a solution of the system

Aj (α)X(α − (−1)j8) = Aj (−α)X(−α − (−1)j8) j = 1, 2 (7)
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X(α) and X−1(α) are regular in5 and are continuous in̄5 with logX(α) growing not
faster than an exponent exp(ν| Imα|) as | Imα| → ∞. In accordance with the functional
equations

X(α + 28) = A−1
j (α +8)Aj (−α −8)X(−α)

X(α − 28) = A−1
j (α −8)Aj (−α +8)X(−α)

X(α) can be continued as a meromorphic matrix function on a wider strip{α : |Reα| < 38}
and, then, in the same manner, on the wholeα-plane. The matricesGj (α) in (5) are
functionally commutative. Hence, from equations (7) we obtain

Y(α − (−1)j8)− Y(−α − (−1)j8) = logGj (α) j = 1, 2 (8)

with Y(α) = logX(α) and logGj (α) defined by expression (6). A solution of the
inhomogeneous system (8) can be obtained by use ofS-integrals (Tuzhilin 1973). Let
us consider the integrals

Sj (α) = i

88

∫
L

F(τ )σj (τ, α)dα

where

σj (τ, α) = sinµτ

cosµτ + (−1)j sinµα
j = 1, 2

µ = π/28, F(τ ) is an odd meromorphic function which decreases exponentially as
| Im τ | → ∞. The integralS1(α) is regular in the strip5(−38,8) = {α : −38 <

Reα < 8} (Tuzhilin 1973). It can be continued on the strip5(−38, 58) by the formula

S1(α) = i

88

∫
L

F(τ ) sinµτ − F(α −8) sinµ(α −8)
cosµτ − sinµα

+ (α +8)F(α −8)
48

.

The last formula enables us to verify thatS1(α) is a solution of the functional equations

S1(α +8)− S1(−α +8) = F(α)
S1(α −8)− S1(−α −8) = 0.

Let n andm be integer numbers such that logG1(α)/ cosn µα, logG2(α)/ cosm µα(nµ>
ν,mµ > ν) tend to zero exponentially as| Imα| → ∞. By use ofS-integrals the following
lemma can be easily proved (see also Tuzhilin 1973).

Lemma. Let n, m andGj (α) satisfy the conditions described above,1j(α) 6= 0 onL, then
the general solution of equations (8), which is regular in5, is continuous in5̄ and grows
not faster than an exponent exp(ν| Imα|), takes the form

Y(α) = i sinn µα

88

∫
L

logG1(τ )/ cosn µτσ1(τ, α)dτ − i(−1)m sinm µα

88

×
∫
L

logG2(τ )/ cosm µτσ2(τ, α)dτ + Y0(α) α ∈ 5 (9)

where Y0(α) is a solution of the homogeneous equations (8):Y0(α) is a polynomial of
sinµα with constant matrix coefficients commuting withJ. Continuation of (9) on a wider
strip can be carried out by use of functional equations (8) or with the aid ofS-integrals
(Tuzhilin 1973).
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In construction of a basic solutionX(α) we putY0 ≡ 0 and, after simple computations,
find

X(α) = S(α)
{

I sinhT (α)+ J√
κ

coshT (α)

}
α ∈ 5 (10)

where

S(α) = exp

{
i

168

2∑
j=1

∫
L

log(λ1
j (τ )λ

2
j (τ ))

(−1)j+δ2j lj+1 sinµτ sinlj µα dτ

coslj µτ(cosµτ + (−1)j sinµα)

}

T (α) = i

168

2∑
j=1

∫
L

log(λ1
j (τ )/λ

2
j (τ ))

(−1)j+δ2j lj+1 sinµτ sinlj µα dτ

coslj µτ(cosµτ + (−1)j sinµα)

wherelj = n for j = 1 andlj = m for j = 2, δik is the Kronecker symbol. By the direct
substitution of formula (10) into (7) it is easily shown thatX(α) in (10) is the required basic
solution. On any wider strip the expression forX(α) is continued by use of the functional
equations.

Having the basic solution, we introduce the new unknown vectorϕ0 as follows

ϕ(α) = X(α)ϕ0(α)

substituteϕ(α) in equations (1) and obtain

ϕ0(α − (−1)j8)−ϕ0(−α − (−1)j8) = X−1(α − (−1)j8)A−1
j (α)ψj (α) (11)

with the right-hand side growing not faster than an exponent. The general solution is
determined in the same manner as in the lemma. The solution of the homogeneous equations
(11) can have poles in5. For example,σ(α) = C/(sinµα− sinµα0) is a solution of (11)
with the trivial right-hand side. For the sake of compactness we omit the corresponding
formulae.

The approach proposed in this letter can be easily generalized to the class of equations
with

Aj (α) = aj (α)I+ bj (α)J+ + cj (α)J− (12)

where

J+ =
(

0 1
κ β

)
J− =

(
β −1
−κ 0

)
J2
+ = κI+ βJ+ J2

− = κI+ βJ−
J+J− = J−J+ = (−κ)I.

Equations (1) with matrix (12) are exactly solvable provided that we have already
constructed the basic matrixX(α). The matrixGj (α) takes the form

Gj (α) = uj (α)I+ vj (α)J+ + wj(α)J−
with

uj (α) = (aj (α)aj (−α)− κ(cj (α)cj (−α)+ bj (α)bj (−α)− cj (α)bj (−α)
−cj (−α)bj (α)))/1̃j (α)

vj (α) = (aj (α)bj (−α)+ aj (−α)cj (α)+ βcj (α)bj (−α))/1̃j (α)
wj (α) = (aj (−α)bj (α)+ aj (α)cj (−α)+ βbj (α)cj (−α))/1̃j (α)
1̃j (α) = detAj (α)
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and

λ
j

1,2 =
aj (−α)+ δ1,2bj (−α)+ δ2,1cj (−α)
aj (α)+ δ1,2bj (α)+ δ2,1cj (α)

j = 1, 2

as its eigenvalues. The constantsδ1,2 = β/2±
√
β2/4+ κ are the eigenvalues of the matrix

J+. If 1̃j (α), j = 1, 2, have no zeros onL, we can compute logGj (α) onL by the formula

logGj = log(λj1/λ
j

2)

λ
j

1 − λj2
Gj + λ

j

1 logλj2 − λj2 logλj1
λ
j

1 − λj2
I λ

j

1 6= λj2
(bj (τ ) 6= cj (τ ), β2/4+ κ 6= 0)

which can be represented in the form (12). We exploit functional commutativity and reduce
equations (7) to system (8). By use ofS-integrals the basic matrix can be determined in
the explicit form

X(α) = exp{I · S0(α)+ J+T0(α)+ J−V0(α)}. (13)

For the sake of compactness we do not write down the expressions forS0, T0 andV0. By use
of the commutativity ofI, J+ andJ− the calculation of the exponent in (13) is equivalent
to calculation of exp(T0J+) and exp(V0J−), which is a simple problem of linear algebra.

Consider two examples of coupled Maliuzhinets’ equations arising in the theory of
diffraction of an electromagnetic wave by a wedge. The first is from the problem of
diffraction of a plane wave obliquely incident on the edge of an impedance wedge with
identical unit relative surface impedancesWj = W−1

j = 1. In this case, we have

Aj (α) =
(

sinα − sinβ W−1
0 cosα cosβ

−W0 cosα cosβ sinα − sinβ

)
ψj =

(
Cj sinα
Dj sinα

)
j = 1, 2

whereW0 andβ are the parameters of the problem andCj , Dj are constants. The second
example of the matrices

Aj (α) =
(

sinα + a11 a12

a21 sinα + a22

)
ψj = 0, j = 1, 2

can be faced with in the problem of diffraction by a wedge having identical anisotropic
surface impedances on both sides (Lyalinov 1994). As a result, in both examples the
corresponding problems can be solved in closed form. We hope that the proposed approach
can be also used in different problems.

This work was supported in part by a grant from the Russian Foundation of Basic
Researches.
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